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Brazil
‡ Institute for Nuclear Theory, University of Washington, Seattle, WA 98195, USA

Received 16 April 1996, in final form 25 June 1996

Abstract. A deformed boson mapping of the Marumori type is derived for an underlying
su(2) algebra. As an example, we bosonize a pairing Hamiltonian in a two level space, for
which an exact treatment is possible. Comparisons are then made between the exact result, our
q-deformed boson expansion and the usual non-deformed expansion.

Nowadays, increasing importance has been given toquantum algebraicapplications in
several fields of physics [1]. In many cases, when the usual Lie algebras do not suffice
to explain certain physical behaviours, quantum algebras are found to be successful mainly
due to a free deformation parameter. In these cases, it is expected that a physical meaning
be attached to the deformation parameter, but this is still a very challenging question. For
an extensive review article on the subject, refer to [2]. In this work we are concerned
with possible improvements that quantum algebras may add to boson expansions (or boson
mappings).

In the literature it is easy to find situations in which fermion pairs can be replaced
by bosons. This is normally performed with the help of boson mappings, that link the
fermionic Hilbert space to another Hilbert space constructed with bosons. Of course boson
mapping techniques are only useful when the Pauli principle effects are somehow minimized.
Historically boson expansion theories were introduced from two different points of view.
The first one is the Beliaev–Zelevinsky–Marshalek (BZM) method [3], which focuses on
the mapping of operators by requiring that the boson images satisfy the same commutation
relations as the fermion operators. In principle, all important operators can be constructed
from a set of basic operators whose commutation relations form an algebra. The mapping
is achieved by preserving this algebra and mapping these basic operators. The second one
is the Marumori method [4], which focuses on the mapping of state vectors. This method
defines the operator in such a way that the matrix elements are conserved by the mapping
and the importance of the commutation rules is left as a consequence of the requirement
that matrix elements coincide in both spaces. The BZM and the Marumori expansions are
equivalent at infinite order, which means that just with the proper mathematics one can go
from one expansion to the other.

In this paper we concentrate on this second boson mapping method. First of all, we
briefly outline the main aspects of the mapping from a fermionic space to a quantum
deformed bosonic space. Once the deformation parameter is set equal to one, the usual
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boson expansion is recovered. Then the simple pairing interaction model is used as an
example for our calculations. The pairing Hamiltonian is exactly diagonalized and the
results are compared with the ones obtained from the traditional boson and from theq-
deformed boson expansions. In both cases we analyse the results for the second and fourth
order Hamiltonians.

In what follows we show a Marumori type deformed boson mapping. We start from an
arbitrary operatorÔ acting on a finite fermionic space. This fermionic Hilbert space with
dimensionN + 1 is spanned by a basis formed by the states{|n >}, with n = 0, 1, ..., N .
Hence,

Ô =
N∑

n,n′=0

〈n′|Ô|n〉|n′〉〈n|. (1)

In order to obtain the boson operators, we mapÔ → ÔB :

ÔB =
N∑

n,n′=0

〈n′|Ô|n〉|n′)(n| (2)

where

|n) = 1√
[n]!

(b†)n|0) (3)

are the deformed boson states [5] with [n] = qn−1
q−1 and [b, b†]q = bb† − qb†b = 1. Note

that the usual brackets〈|〉 stand for fermionic states and the round brackets(|) stand for
bosonic states. From the above considerations, it is straightforward to check that

〈m|Ô|m′〉 = (m|ÔB |m′). (4)

Therefore, we notice that the mapping is achieved by the equality between the matrix
elements in the fermionic space and their counterparts in the bosonic space. As examples,
we show the expressions for thesu(2) operators in the deformed bosonic space:

(Jz)B =
2j∑

n=0

∞∑
l=0

(−j + n)
(−1)lql(l−1)/2

[n]![ l]!
(b†)n+lbn+l (5)

(J+)B =
2j∑

n=0

∞∑
l=0

√
(n + 1)(2j − n)

[n + 1]

(−1)lql(l−1)/2

[n]![ l]!
(b†)n+l+1bn+l (6)

(J+J−)B =
2j∑

n=0

∞∑
l=0

n(2j − n + 1)
(−1)lql(l−1)/2

[n]![ l]!
(b†)n+lbn+l (7)

(J−J+)B =
2j∑

n=0

∞∑
l=0

(2j − n)(n + 1)
(−1)lql(l−1)/2

[n]![ l]!
(b†)n+lbn+l (8)

and(J−)B = (J+)
†
B . In deducing the above expressions we have used the fact that [6]

|0〉〈0| =: expq(−b†b) :=
∞∑
l=0

(−1)lql(l−1)/2

[l]!
(b†)lbl (9)

and we define thesu(2) basis as usual, i.e.|n〉 = |jm〉, with m = −j + n.
Next, we apply theq-deformed boson expansions to the pairing interaction model [7],

which consists of twoN -fold degenerate levels, whose energy difference isε. The lower
level has energy−ε/2 and its single-particle states are usually labelledj1m1 and the upper
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level has energyε/2 and its single-particle states are labelledj2m2. The pairing Hamiltonian
reads [8]

H = ε

2

∑
m

(a
†
j1m

aj1m − a
†
j2m

aj2m) − G

4

( ∑
j

∑
m

a
†
jma

†
jm̄

∑
j ′

∑
m′

aj ′m̄′aj ′m′ + h.c.

)
(10)

wherea
†
jm̄ = (−1)j−maj−m. In what follows, the number of particles (which are fermions)

N will be even and 2j = N/2. Introducing the quasispinsu(2) generators

S+ = S
†
− = 1

2

∑
m1

a
†
j1m1

a
†
j1m̄1

=
√

�A
†
1

Sz = 1

2

∑
m1

a
†
j1m1

aj1m1 − N

4

L+ = L
†
− = 1

2

∑
m2

a
†
j2m2

a
†
j2m̄2

=
√

�A
†
2

Lz = 1

2

∑
m2

a
†
j2m2

aj2m2 − N

4

one sees that the pairing interaction has an underlyingsu(2)⊗ su(2) algebra. With the help
of these operators, equation (10) can be rewritten as

H = ε(Sz − Lz) − G�

2
((A

†
1 + A

†
2)(A1 + A2) + (A1 + A2)(A

†
1 + A

†
2)). (11)

The basis of states used for the diagonalization of the above Hamiltonian is|S = N
4 Lz,

L = N
4 − Lz〉 [7, 9].

Deformation can be straightforwardly introduced by deforming thesu(2)⊗su(2) algebra
and this problem has already been tackled in [9]. To check the validity of the boson
expansion method proposed in this letter, we substitute equations (5)–(8) into equation (11)
and obtain for the fourth order Hamiltonian:
H4

ε
= −x

2
+

(
1 − x(� − 1)

2�

)
b

†
1b1 +

(
−1 − x(� − 1)

2�

)
b

†
2b2 − x

2
(b

†
1b2 + b

†
2b1)

+
(

2

[2]
− 1

)
(b

†
1b

†
1b1b1 − b

†
2b

†
2b2b2)

−x

4�

(
2 − 3� − 8

[2]
+ 5�

[2]
+ �

[2]
q

)

×(b
†
1b

†
1b1b1 + b

†
2b

†
2b2b2) − x

2�

(√
2�(� − 1)

[2]
− �

)
×(b

†
1b

†
2b2b2 + b

†
1b

†
1b1b2 + h.c.) (12)

wherex = 2G�/ε. The second order Hamiltonian is easily read off from the above equation
by omitting all terms containing four boson operators. Diagonalizing equation (12) is a
simple task and for this purpose the basis used is

|n1n2) = 1√
[n1]![ n2]!

(b
†
1)

n1(b
†
2)

n2|0) (13)

and

b
†
1|n1) =

√
[n1 + 1]|n1 + 1) b1|n1) =

√
[n1]|n1 − 1)

with similar expressions for theb2 andb
†
2 operators. We finally obtain:

H4

ε
|n1n2) =

(
− x

2
+

(
2

[2]
− 1

)
([n1][n1 − 1] − [n2][n2 − 1]) +

(
1 − x(� − 1)

2�

)
[n1]
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+
(

−1 − x(� − 1)

2�

)
[n2]

−x

4�

(
2 − 3� − 8

[2]
+ 5�

[2]
+ �

[2]
q

)
×([n1][n1 − 1] + [n2][n2 − 1])

)
|n1n2)

+
(

−x

2

√
[n2][n1 + 1] − x

2�

(√
2�(� − 1)

[2]
− �

)
×([n2 − 1] + [n1])

√
[n2][n1 + 1]

)
|n1 + 1n2 − 1)

+
(

−x

2

√
[n1][n2 + 1] − x

2�

(√
2�(� − 1)

[2]
− �

)
×([n1 − 1] + [n2])

√
[n2 + 1][n1]

)
|n1 − 1 n2 + 1). (14)

Equation (14) yields the energy spectrum for the deformed Marumori type boson
expansion. Whenq is set equal to unity, the non-deformed spectrum is obtained. In
what follows, we have chosenx = 1.0 and the degeneracy� = 20. In figure 1 we show
the ground state energy resulting from the exact diagonalization of equation (11) and the
ground state energies obtained from the second and fourth order Hamiltonians defined in
equation (12) as a function of the number of pairs forq = 1. One can see that the fourth
order curve lies closer to the exact result than the second order curve, as expected, once the
full expansion converges to the exact result.

0.0 5.0 10.0 15.0 20.0
pair number

–1.5

–1.0

–0.5

0.0

E
0

Figure 1. The ground state energyE0 is plotted as a function of the number of pairs for the
exact result (full curve), the second order expansion result (short-dashed curve) and for the fourth
order result (long-dashed curve) forq = 1, the interaction strengthx = 1.0 and the degeneracy
� = 20.

We then compare the exact result with the deformed second and fourth order expansions
and the results are plotted in figure 2. For those cases, the parameterq was chosen in order
to fit the exact result and we find that the second order expansion converges if we set
q = 0.862 and the fourth order expansion also converges ifq = 0.810. This implies that
the deformation parameter is playing the same rôle as all the rest of the truncated expansion
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Figure 2. The ground state energyE0 is plotted as a function of the number of pairs for the
exact result withq = 1 (full curve), the second order expansion result withq = 0.862 (broken
curve) and for the fourth order result withq = 0.810 (chain curve) for the interaction strength
x = 1.0 and the degeneracy� = 20.

and one does not have to go beyond the deformed second order boson expansion to obtain
the exact result, while the fourth order non-deformed expansion still gives very poor results,
as seen in figure 1.

As is well known, boson expansion theories are usually applied to problems where the
exact fermionic results are either difficult or impossible to obtain and the boson expansion
methods are useful whenever the expansion converges rapidly. The quantum deformation
parameter can be used to accelerate this convergence and, in this work, we have chosen
a model for which the exact result is known in order to verify that point. In this respect,
one should bear in mind that theq-deformed boson expansion is unitarily equivalent to the
usual boson theories, i.e. at infinite order they are identical. Therefore, the use of quantum
algebras in boson expansion theory can be a very useful method in providing the same
result as the complete series. In cases where experimental results are known,q has also
been used in the literature for achieving the best fitting, as in [10]. We may then conclude
that further investigations, like the consideration of the BZM method and also of other
model Hamiltonians, deserve some effort in the future.
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